Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Cães , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citocinas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Camundongos Endogâmicos C57BL , Feminino , Glioma/terapia , Glioma/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia
2.
Anticancer Drugs ; 35(5): 397-411, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527419

RESUMO

This study aimed to investigate the role and molecular mechanism of heme oxygenase-1 (HMOX1) in chemotherapy resistance in small-cell lung cancer (SCLC). Employed bioinformatics, qPCR, and Western Blot to assess HMOX1 levels in SCLC versus normal tissues and its prognostic relevance. CCK-8, flow cytometry, and thiobarbituric acid assays determined HMOX1's impact on SCLC chemosensitivity, ferroptosis markers, lipid peroxidation, and mic14's role in chemoresistance. In the GSE40275 and GSE60052 cohorts, HMOX1 expression was downregulated in SCLC tissues compared to normal tissues. Higher HMOX1 expression was associated with improved prognosis in the Sun Yat-sen University Cancer Hospital cohort and GSE60052 cohort. The RNA and protein levels of HMOX1 were reduced in drug-resistant SCLC cell lines compared to chemosensitive cell lines. Upregulation of HMOX1 increased chemosensitivity and reduced drug resistance in SCLC, while downregulation of HMOX1 decreased chemosensitivity and increased drug resistance. Upregulation of HMOX1 elevated the expression of ferroptosis-related proteins ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while decreasing the expression of GPX4 and xCT. Conversely, downregulation of HMOX1 decreased the expression of ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while increasing the expression of GPX4 and xCT. Upregulation of HMOX1 promoted cellular lipid peroxidation, whereas downregulation of HMOX1 inhibited cellular lipid peroxidation. Upregulation of HMOX1 reduced the RNA level of mic14, while downregulation of HMOX1 increased the RNA level of mic14. mic14 exhibited inhibitory effects on cellular lipid peroxidation in SCLC cells and contributed to reduced chemosensitivity and increased drug resistance in chemoresistant SCLC cell lines. HMOX1 plays a role in ferroptosis by regulating mic14 expression, thereby reversing chemoresistance in SCLC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Apoferritinas/genética , Apoferritinas/farmacologia , Apoferritinas/uso terapêutico , Heme Oxigenase-1/genética , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , RNA/farmacologia , RNA/uso terapêutico , Transferrinas/farmacologia
3.
Trends Pharmacol Sci ; 45(4): 304-318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453522

RESUMO

Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Resultado do Tratamento , RNA/uso terapêutico , RNA Mensageiro/genética , Microambiente Tumoral/fisiologia
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 282-286, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387935

RESUMO

Acute myeloid leukemia(AML) is a malignant tumor of the blood system that is highly heterogeneous in terms of pathogenesis, genetic background and prognostic outcome, with an extremely high fatality rate and recurrence rate. Therefore, exploring new treatment methods and diagnostic strategies is one of the ways to improve the survival rate of patients with acute myeloid leukemia. Circular RNA (circRNA) is a special kind of noncoding RNA, which plays an important role in gene transcription, translation and epigenetic modification, and participates in the disease progression and prognosis of multiple solid tumors. At present, it has found that the abnormal expression of circRNA is closely related to the occurrence, development, drug resistance and prognosis of acute myeloid leukemia.Clinically, it can be used as a new biomarker and potential therapeutic target for AML. This article briefly reviews the research progress of circRNA in acute myeloid leukemia, aiming to provide new strategies for optimizing the diagnosis, treatment and prognosis of leukemia.


Assuntos
Leucemia Mieloide Aguda , RNA Circular , Humanos , Progressão da Doença , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , RNA/genética , RNA/uso terapêutico , RNA Circular/genética
5.
Surgery ; 175(5): 1346-1351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342730

RESUMO

BACKGROUND: Gut ischemia/reperfusion causes the release of damage-associated molecular patterns, leading to acute lung injury and high mortality. Cold-inducible ribonucleic acid-binding protein is a ribonucleic acid chaperon that binds the polyadenylation tail of messenger ribonucleic acid intracellularly. Upon cell stress, cold-inducible ribonucleic acid-binding protein is released, and extracellular cold-inducible ribonucleic acid-binding protein acts as a damage-associated molecular pattern, worsening inflammation. To inhibit extracellular cold-inducible ribonucleic acid-binding protein, we have recently developed an engineered polyadenylation tail named A12. Here, we sought to investigate the therapeutic potential of A12 in gut ischemia/reperfusion-induced acute lung injury. METHODS: Male C57BL6/J mice underwent superior mesenteric artery occlusion and were treated with intraperitoneal A12 (0.5 nmol/g body weight) or vehicle at the time of reperfusion. Blood and lungs were collected 4 hours after gut ischemia/reperfusion. Systemic levels of extracellular cold-inducible ribonucleic acid-binding protein, interleukin-6, aspartate transaminase, alanine transaminase, and lactate dehydrogenase were determined. The pulmonary gene expression of cytokines (interleukin-6, interleukin-1ß) and chemokines (macrophage-inflammatory protein-2, keratinocyte-derived chemokine) was also assessed. In addition, lung myeloperoxidase, injury score, and cell death were determined. Mice were monitored for 48 hours after gut ischemia/reperfusion for survival assessment. RESULTS: Gut ischemia/reperfusion significantly increased the serum extracellular cold-inducible ribonucleic acid-binding protein levels. A12 treatment markedly reduced the elevated serum interleukin-6, alanine transaminase, aspartate transaminase, and lactate dehydrogenase by 53%, 23%, 23%, and 24%, respectively, in gut ischemia/reperfusion mice. A12 also significantly decreased cytokine and chemokine messenger ribonucleic acids and myeloperoxidase activity in the lungs of gut ischemia/reperfusion mice. Histological analysis revealed that A12 attenuated tissue injury and cell death in the lungs of gut ischemia/reperfusion mice. Finally, administration of A12 markedly improved the survival of gut ischemia/reperfusion mice. CONCLUSION: A12, a novel extracellular cold-inducible ribonucleic acid-binding protein inhibitor, diminishes inflammation and mitigates acute lung injury when employed as a treatment during gut ischemia/reperfusion. Hence, the targeted approach toward extracellular cold-inducible ribonucleic acid-binding protein emerges as a promising therapeutic strategy for alleviating gut ischemia/reperfusion-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Interleucina-6/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Pulmão/metabolismo , Isquemia/metabolismo , Reperfusão/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , RNA/uso terapêutico , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Peroxidase/metabolismo , Lactato Desidrogenases/metabolismo
6.
Prog Mol Biol Transl Sci ; 203: 115-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359994

RESUMO

Ribonucleic acid (RNA) therapy has been extensively researched for several decades and has garnered significant attention in recent years owing to its potential in treating a broad spectrum of diseases. It falls under the domain of gene therapy, leveraging RNA molecules as a therapeutic approach in medicine. RNA can be targeted using small-molecule drugs, or RNA molecules themselves can serve as drugs by interacting with proteins or other RNA molecules. While several RNA drugs have been granted clinical approval, numerous RNA-based therapeutics are presently undergoing clinical investigation or testing for various conditions, including genetic disorders, viral infections, and diverse forms of cancer. These therapies offer several advantages, such as high specificity, enabling precise targeting of disease-related genes or proteins, cost-effectiveness, and a relatively straightforward manufacturing process. Nevertheless, successful translation of RNA therapies into widespread clinical use necessitates addressing challenges related to delivery, stability, and potential off-target effects. This chapter provides a comprehensive overview of the general concepts of various classes of RNA-based therapeutics, the mechanistic basis of their function, as well as recent applications of RNA therapeutic in clinics.


Assuntos
Terapia Genética , RNA , Humanos , RNA/genética , RNA/uso terapêutico , RNA/metabolismo , RNA Interferente Pequeno/uso terapêutico
8.
J Immunother Cancer ; 12(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242717

RESUMO

BACKGROUND: Lenvatinib plus pembrolizumab demonstrated clinically meaningful benefit in patients with previously treated advanced endometrial carcinoma in Study 111/KEYNOTE-146 (NCT02501096). In these exploratory analyses from this study, we evaluated the associations between clinical outcomes and gene expression signature scores and descriptively summarized response in biomarker subpopulations defined by tumor mutational burden (TMB) and DNA variants for individual genes of interest. METHODS: Patients with histologically confirmed metastatic endometrial carcinoma received oral lenvatinib 20 mg once daily plus intravenous pembrolizumab 200 mg every 3 weeks for 35 cycles. Archived formalin-fixed paraffin-embedded tissue was obtained from all patients. T-cell-inflamed gene expression profile (TcellinfGEP) and 11 other gene signatures were evaluated by RNA sequencing. TMB, hotspot mutations in PIK3CA (oncogene), and deleterious mutations in PTEN and TP53 (tumor suppressor genes) were evaluated by whole-exome sequencing (WES). RESULTS: 93 and 79 patients were included in the RNA-sequencing-evaluable and WES-evaluable populations, respectively. No statistically significant associations were observed between any of the RNA-sequencing signature scores and objective response rate or progression-free survival. Area under the receiver operating characteristic curve values for response ranged from 0.39 to 0.54; all 95% CIs included 0.50. Responses were seen regardless of TMB (≥175 or <175 mutations/exome) and mutation status. There were no correlations between TcellinfGEP and TMB, TcellinfGEP and microvessel density (MVD), or MVD and TMB. CONCLUSIONS: This analysis demonstrated efficacy for lenvatinib plus pembrolizumab regardless of biomarker status. Results from this study do not support clinical utility of the evaluated biomarkers. Further investigation of biomarkers for this regimen is warranted. TRIAL REGISTRATION NUMBER: NCT02501096.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias do Endométrio , Compostos de Fenilureia , Quinolinas , Feminino , Humanos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Biomarcadores Tumorais/genética , RNA/uso terapêutico
9.
J Clin Oncol ; 42(9): 1067-1076, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37963313

RESUMO

PURPOSE: GemPred, a transcriptomic signature predictive of the efficacy of adjuvant gemcitabine (GEM), was developed from cell lines and organoids and validated retrospectively. The phase III PRODIGE-24/CCTG PA6 trial has demonstrated the superiority of modified folinic acid, fluorouracil, irinotecan, and oxaliplatin (mFOLFIRINOX) over GEM as adjuvant therapy in patients with resected pancreatic ductal adenocarcinoma at the expense of higher toxicity. We evaluated the potential predictive value of GemPred in this population. PATIENTS AND METHODS: Routine formalin-fixed paraffin-embedded surgical specimens of 350 patients were retrieved for RNA sequencing and GemPred prediction (167 in the GEM arm and 183 in the mFOLFIRINOX [mFFX] arm). Survival analyses were stratified by resection margins, lymph node status, and cancer antigen 19-9 level. RESULTS: Eighty-nine patients' tumors (25.5%) were GemPred+ and were thus predicted to be gemcitabine-sensitive. In the GEM arm, GemPred+ patients (n = 50, 30%) had a significantly longer disease-free survival (DFS) than GemPred- patients (n = 117, 70%; median 27.3 v 10.2 months, hazard ratio [HR], 0.43 [95% CI, 0.29 to 0.65]; P < .001) and cancer-specific survival (CSS; median 68.4 v 28.6 months, HR, 0.42 [95% CI, 0.27 to 0.66]; P < .001). GemPred had no prognostic value in the mFFX arm. DFS and CSS were similar in GemPred+ patients who received adjuvant GEM and mFFX (median 27.3 v 24.0 months, and 68.4 v 51.4 months, respectively). The statistical interaction between GEM and GemPred+ status was significant for DFS (P = .008) and CSS (P = .004). GemPred+ patients had significantly more adverse events of grade ≥3 in the mFFX arm (76%) compared with those in the GEM arm (40%; P = .001). CONCLUSION: This ancillary study of a phase III randomized trial demonstrates that among the quarter of patients with a GemPred-positive transcriptomic signature, survival was comparable with that of mFOLFIRINOX, whereas those receiving adjuvant gemcitabine had fewer adverse events.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Desoxicitidina/efeitos adversos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/cirurgia , Estudos Retrospectivos , Fluoruracila/efeitos adversos , Adjuvantes Imunológicos/uso terapêutico , RNA/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Neuro Oncol ; 26(3): 458-472, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-37870091

RESUMO

BACKGROUND: Antibody-drug conjugates (ADCs) enhance the specificity of cytotoxic drugs by directing them to cells expressing target antigens. Multiple ADCs are FDA-approved for solid and hematologic malignancies, including those expressing HER2, TROP2, and NECTIN4. Recently, an ADC targeting HER2 (Trastuzumab-Deruxtecan) increased survival and reduced growth of brain metastases in treatment-refractory metastatic breast cancer, even in tumors with low HER2 expression. Thus, low-level expression of ADC targets may be sufficient for treatment responsiveness. However, ADC target expression is poorly characterized in many central nervous system (CNS) tumors. METHODS: We analyzed publicly available RNA-sequencing and proteomic data from the children's brain tumor network (N = 188 tumors) and gene-expression-omnibus RNA-expression datasets (N = 356) to evaluate expression of 14 potential ADC targets that are FDA-approved or under investigation in solid cancers. We also used immunohistochemistry to measure the levels of HER2, HER3, NECTIN4, TROP2, CLDN6, CLDN18.2, and CD276/B7-H3 protein in glioblastoma, oligodendroglioma, meningioma, ependymoma, pilocytic astrocytoma, medulloblastoma, atypical teratoid/rhabdoid tumor (AT/RT), adamantinomatous craniopharyngioma (ACP), papillary craniopharyngioma (PCP), and primary CNS lymphoma (N = 575). RESULTS: Pan-CNS analysis showed subtype-specific expression of ADC target proteins. Most tumors expressed HER3, B7-H3, and NECTIN4. Ependymomas strongly expressed HER2, while meningiomas showed weak-moderate HER2 expression. ACP and PCP strongly expressed B7-H3, with TROP2 expression in whorled ACP epithelium. AT/RT strongly expressed CLDN6. Glioblastoma showed little subtype-specific marker expression, suggesting a need for further target development. CONCLUSIONS: CNS tumors exhibit subtype-specific expression of ADC targets including several FDA-approved for other indications. Clinical trials of ADCs in CNS tumors may therefore be warranted.


Assuntos
Neoplasias da Mama , Neoplasias do Sistema Nervoso Central , Neoplasias Cerebelares , Glioblastoma , Imunoconjugados , Tumor Rabdoide , Criança , Humanos , Feminino , Glioblastoma/tratamento farmacológico , Proteômica , Imunoconjugados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Tumor Rabdoide/tratamento farmacológico , Neoplasias Cerebelares/tratamento farmacológico , RNA/uso terapêutico , Claudinas/uso terapêutico , Antígenos B7
11.
Semin Arthritis Rheum ; 64S: 152329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008706

RESUMO

BACKGROUND: Although targeted biological treatments have transformed the outlook for patients with rheumatoid arthritis (RA), 40% of patients show poor clinical response, and there is an imperative to unravel the molecular pathways and mechanisms underlying non-response and disease progression. 5-20% of RA individuals do not respond to all current medications including biologic and targeted therapies, which suggests that distinct pathogenic processes underlie multi-drug refractoriness. OBJECTIVES: In this brief review we discuss advances from recent studies in precision medicine in rheumatoid arthritis. METHODS: Bulk RNA-Sequencing of synovial biopsies from RA individuals combined with histology and deep clinical phenotyping has revealed substantial insights into divergent pathogenic pathways which lead to disease progression and illuminated mechanisms underlying failure to response to specific treatments. Biopsy-driven randomised controlled trials, such as R4RA and the forthcoming STRAP trial, have enabled the development of machine learning predictive models for predicting response to different therapies. RESULTS: In the Pathobiology of Early Arthritis Cohort (PEAC), gene expression analysis showed that individuals could be classified into three gene expression subgroups which correlated with histopathotypes defined by histological markers: pauci-immune fibroid pathotype characterised by fibroblasts and an absence of immune inflammatory cells; diffuse-myeloid pathotype characterised by macrophage influx; and the lympho-myeloid pathotype delineated by the presence of B cells, but typically containing a complex inflammatory infiltrate with ectopic lymphoid structure formation. In the R4RA biopsy-driven randomised controlled trial, patients were randomised to either rituximab or tocilizumab. Comprehensive analysis of synovial biopsies pre/post-treatment identified gene signatures of response associated with pathogenic pathways which could be tracked over time. A group of true refractory patients were identified who had failed anti-TNF prior to the study (it was an entry criterion) and then subsequently failed both trial biologics during the trial. RNA-Seq analysis and digital spatial profiling identified specific cell types including DKK3+ fibroblasts as being associated with the refractory state. We identified machine learning predictive models based on specific gene signatures which were able to predict future response to therapy as well as the refractory state. CONCLUSIONS: RNA-sequencing of synovial biopsies has enabled substantial progress in understanding disease endotypes in RA and identifying synovial gene signatures which predict prognosis and future response to treatment.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Antirreumáticos/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Progressão da Doença , RNA/metabolismo , RNA/uso terapêutico , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Rhinology ; 62(1): 88-100, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864411

RESUMO

BACKGROUND: Excessive epithelial-to-mesenchymal transition (EMT) of nasal epithelial cells (NECs) play a prominent role in chronic rhinosinusitis with nasal polyps (CRSwNP) pathogenesis. Long intergenic non-coding RNA 01094 (LINC01094) was previously reported to be overexpressed in CRSwNP, while the regulatory mechanism by which LINC01094 regulates CRSwNP progression remains unclear. Our study aimed to investigate the role of LINC01094 in CRSwNP development. METHODS: hNEC were isolated from tissues of controls and CRSwNP patients and stimulated with interleukin (IL)-13. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay was employed to analyze hNEC viability. Flow cytometry was employed to analyze pyroptosis. Immunofluorescence was employed to analyze Snail nuclear translocation. The interactions between LINC01094, fused in sarcoma (FUS) and high mobility group box-1 (HMGB1) were analyzed by RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS: LINC01094 and EMT-related proteins were markedly upregulated in nasal polyp tissues of CRSwNP. LINC01094 knockdown inhibited IL-13-induced hNEC EMT and pyroptosis. LINC01094 promoted HMGB1 expression in CRSwNP by binding with FUS. HMGB1 promoted Snail nuclear import in GSK-B phosphorylation-dependent manner. CONCLUSION: LINC01094 facilitated hNEC EMT and pyroptosis in CRSwNP by activating the HMGB1/GSK-B Snail axis, which suggested that LINC01094 might serve as a biomarker and therapeutic target in CRSwNP.


Assuntos
Proteína HMGB1 , Pólipos Nasais , Rinite , Sinusite , Humanos , Doença Crônica , Células Epiteliais/metabolismo , Proteína HMGB1/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/tratamento farmacológico , Piroptose , Rinite/patologia , RNA/metabolismo , RNA/uso terapêutico , Sinusite/metabolismo , RNA não Traduzido
13.
Cancer Commun (Lond) ; 44(2): 226-250, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38143235

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Diacilglicerol Quinase/genética , Multiômica , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , RNA/uso terapêutico , Microambiente Tumoral
14.
Anesth Analg ; 138(3): 664-675, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112490

RESUMO

BACKGROUND: Many chemotherapeutic drugs, including paclitaxel, produce neuropathic pain in patients with cancer, which is a dose-dependent adverse effect. Such chemotherapy-induced neuropathic pain (CINP) is difficult to treat with existing drugs. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidative responses and activates phosphorylated Nrf2 (pNrf2). We determined the analgesic effects of bardoxolone methyl (BM), an Nrf2 activator, and the role of pNrf2 on CINP. METHODS: CINP was induced in rats by intraperitoneally injecting paclitaxel on 4 alternate days in rats. BM was injected systemically as single or repeated injections after pain fully developed. RNA transcriptome, mechanical hyperalgesia, levels of inflammatory mediators and pNrf2, and location of pNrf2 in the dorsal root ganglia (DRG) were measured by RNA sequencing, von Frey filaments, Western blotting, and immunohistochemistry in rats and human DRG samples. In addition, the mitochondrial functions in 50B11 DRG neuronal cells were measured by fluorescence assay. RESULTS: Our RNA transcriptome of CINP rats showed a downregulated Nrf2 pathway in the pain condition. Importantly, single and repeated systemic injections of BM ameliorated CINP. Paclitaxel increased inflammatory mediators, but BM decreased them and increased pNrf2 in the DRG. In addition, paclitaxel decreased mitochondrial membrane potential and increased mitochondrial volume in 50B11 cells, but BM restored them. Furthermore, pNrf2 was expressed in neurons and satellite cells in rat and human DRG. CONCLUSIONS: Our results demonstrate the analgesic effects of BM by Nrf2 activation and the fundamental role of pNrf2 on CINP, suggesting a target for CINP and a therapeutic strategy for patients.


Assuntos
Antineoplásicos , Neuralgia , Ácido Oleanólico/análogos & derivados , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Gânglios Espinais , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Paclitaxel/efeitos adversos , Hiperalgesia/metabolismo , Antineoplásicos/efeitos adversos , Analgésicos/uso terapêutico , RNA/metabolismo , RNA/farmacologia , RNA/uso terapêutico , Mediadores da Inflamação/metabolismo
15.
JNCI Cancer Spectr ; 8(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113421

RESUMO

In previously reported retrospective studies, high tumor RNA disruption during neoadjuvant chemotherapy predicted for post-treatment pathologic complete response (pCR) and improved disease-free survival at definitive surgery for primary early breast cancer. The BREVITY (Breast Cancer Response Evaluation for Individualized Therapy) prospective clinical trial (NCT03524430) seeks to validate these prior findings. Here we report training set (Phase I) findings, including determination of RNA disruption index (RDI) cut points for outcome prediction in the subsequent validation set (Phase II; 454 patients). In 80 patients of the training set, maximum tumor RDI values for biopsies obtained during neoadjuvant chemotherapy were significantly higher in pCR responders than in patients without pCR post-treatment (P = .008). Moreover, maximum tumor RDI values ≤3.7 during treatment predicted for a lack of pCR at surgery (negative predictive value = 93.3%). These findings support the prospect that on-treatment tumor RNA disruption assessments may effectively predict post-surgery outcome, possibly permitting treatment optimization.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Resultado do Tratamento , Resposta Patológica Completa , RNA/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , RNA Neoplásico
16.
J Immunother Cancer ; 11(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040417

RESUMO

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Imunoterapia , RNA/metabolismo , RNA/uso terapêutico , Ubiquitinação , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico
17.
BMC Gastroenterol ; 23(1): 386, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951862

RESUMO

BACKGROUND: Hepatitis C virus (HCV) infection is one of the main causes of liver cancer and imposes an enormous social and economic burden. The blood-borne virus screening policy for preventing iatrogenic infections renders hospitals important for identifying individuals infected with hepatitis C. Therefore, we aimed to investigate the establishment of a multi-disciplinary cooperation model in medical institutions to leverage the screening results of patients with hepatitis C. Our objective is to ensure that patients receive timely and effective diagnosis and treatment, thereby enabling the elimination of hepatitis C by 2030. METHOD: A multi-disciplinary cooperation model was established in October 2021. This retrospective study was based on the establishment of antibody-positive and HCV RNA-positive patient databases. A Chi-square test was used to compare the HCV RNA confirmation rate in anti-HCV-positive patients, as well as the hepatitis C diagnosis rate and treatment rate in RNA-positive patients before and after the multi-disciplinary cooperation. A multivariable logistic regression was used to analyse the factors affecting the treatment of patients with hepatitis C. In addition, we examined changes in the level of hepatitis C knowledge among medical staff. RESULTS: After the implementation of the multi-disciplinary cooperation model, the RNA confirmation rate of hepatitis C antibody-positive patients increased from 36.426% to 88.737%, the diagnostic accuracy rate of RNA-positive patients increased from 67.456% to 98.113%, and the treatment rate of patients with hepatitis C increased from 12.426% to 58.491%. Significant improvements were observed among the clinicians regarding their ability to understand the characteristics of hepatitis C (93.711% vs. 58.861%), identify people at high risk (94.340% vs. 53.797%), manage patients with hepatitis C after diagnosis (88.679% vs. 67.089%), and effectively treat hepatitis C (84.277% vs. 51.899%). Multi-disciplinary cooperation in medical institutions was the most important factor for patients to undergo HCV treatment (odds ratio: 0.024, 95% confidence interval: 0.007-0.074). CONCLUSIONS: This study showed that the use of a multi-disciplinary cooperation model to utilise the results of HCV antibody screening fully in patients through further tracking, referral, and treatment may facilitate the detection and treatment of patients with hepatitis C and accelerate the elimination of HCV in China.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Estudos Retrospectivos , Hepatite C/diagnóstico , Hepatite C/prevenção & controle , Hepatite C/tratamento farmacológico , Hospitais , Anticorpos Anti-Hepatite C/uso terapêutico , RNA/uso terapêutico , China , Antivirais/uso terapêutico
18.
J Immunother Cancer ; 11(11)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007237

RESUMO

BACKGROUND: Single-cell RNA sequencing, also known as scRNA-seq, is a method profiling cell populations on an individual cell basis. It is particularly useful for more deeply understanding cell behavior in a complicated tumor microenvironment. Although several previous studies have examined scRNA-seq for hepatocellular carcinoma (HCC) tissues, no one has tested and analyzed HCC with different stages. METHODS: In this investigation, immune cells isolated from surrounding normal tissues and cancer tissues from 3 II-stage and 4 III-stage HCC cases were subjected to deep scRNA-seq. The analysis included 15 samples. We distinguished developmentally relevant trajectories, unique immune cell subtypes, and enriched pathways regarding differential genes. Western blot and co-immunoprecipitation were performed to demonstrate the interaction between fatty acid binding protein 1 (FABP1) and peroxisome proliferator-activated receptor gamma(PPARG). In vivo experiments were performed in a C57BL/6 mouse model of HCC established via subcutaneous injection. RESULTS: FABP1 was discovered to be overexpressed in tumor-associated macrophages (TAMs) with III-stage HCC tissues compared with II-stage HCC tissues. This finding was fully supported by immunofluorescence detection in significant amounts of HCC human samples. FABP1 deficiency in TAMs inhibited HCC progression in vitro. Mechanistically, FABP1 interacted with PPARG/CD36 in TAMs to increase fatty acid oxidation in HCC. When compared with C57BL/6 mice of the wild type, tumors in FABP1-/- mice consistently showed attenuation. The FABP1-/- group's relative proportion of regulatory T cells and natural killer cells showed a downward trend, while dendritic cells, M1 macrophages, and B cells showed an upward trend, according to the results of mass cytometry. In further clinical translation, we found that orlistat significantly inhibited FABP1 activity, while the combination of anti-programmed cell death 1(PD-1) could synergistically treat HCC progression. Liposomes loaded with orlistat and connected with IR780 probe could further enhance the therapeutic effect of orlistat and visualize drug metabolism in vivo. CONCLUSIONS: ScRNA-seq atlas revealed an FABP1-dependent immunosuppressive environment in HCC. Orlistat significantly inhibited FABP1 activity, while the combination of anti-PD-1 could synergistically treat HCC progression. This study identified new treatment targets and strategies for HCC progression, contributing to patients with advanced HCC from new perspectives.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a Ácido Graxo/genética , Imunossupressores/uso terapêutico , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Orlistate/farmacologia , Orlistate/uso terapêutico , PPAR gama/metabolismo , PPAR gama/farmacologia , PPAR gama/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico , Microambiente Tumoral
19.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37857524

RESUMO

RATIONALE: 177Lu-PSMA ([177Lu]Lutetium-PSMA-617) therapy is an effective treatment option for patients with prostate specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer, but still shows a non-responder rate of approximately 30%. Combination regimes of programmed death-ligand 1 (PD-L1) inhibition and concomitant 177Lu-PSMA therapy have been proposed to increase the response rate. However, the interplay of immune landscape and 177Lu-PSMA therapy efficacy is poorly understood. METHODS: Between March 2018 and December 2021, a total of 168 patients were referred to 177Lu-PSMA therapy in our department and received a mean total dose of 21.9 GBq (three cycles in mean). All patients received baseline PSMA positron emission tomography to assess the PSMA uptake. The histopathological specimen of the primary prostate tumor was available with sufficient RNA passing quality control steps for genomic analysis in n=23 patients. In this subset of patients, tumor RNA transcriptomic analyses assessed 74 immune-related features in total, out of which n=24 signatures were not co-correlated and investigated further for outcome prognostication. RESULTS: In the subset of patients who received 177Lu-PSMA therapy, PD-L1 was not significantly associated with OS (HR per SD change (95% CI) 0.74 (0.42 to 1.30); SD: 0.18; p=0.29). In contrast, PD-L2 signature was positively associated with longer OS (HR per SD change 0.46 (95% CI 0.29 to 0.74); SD: 0.24; p=0.001; median OS 17.2 vs 5.7 months in higher vs lower PD-L2 patients). In addition, PD-L2 signature correlated with PSA-response (ϱ=-0.46; p=0.04). The PD-L2 signature association with OS was significantly moderated by L-Lactatdehydrogenase (LDH) levels (Cox model interaction p=0.01). CONCLUSION: Higher PD-L2 signature might be associated with a better response to 177Lu-PSMA therapy and warrants further studies investigating additional immunotherapy. In contrast, PD-L1 was not associated with outcome. The protective effect of PD-L2 signature might be present only in men with lower LDH levels.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radioisótopos , Masculino , Humanos , Radioisótopos/uso terapêutico , Transcriptoma , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RNA/uso terapêutico
20.
Trends Endocrinol Metab ; 34(12): 838-848, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758602

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, influencing numerous regulatory axes and extrahepatic vital organs. The molecular mechanisms that lead to the progression of NAFLD remain unclear and knowledge on the pathways causing hepatocellular damage followed by lipid accumulation is limited. Recently, a number of studies have shown that mRNA N6-methyladenosine (m6A) modification contributes to the progression of NAFLD. In this review, we summarize current knowledge on m6A modification in the metabolic processes associated with NAFLD and discuss the challenges of and prospects for therapeutic avenues based on m6A regulation for the treatment of liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adenosina/metabolismo , Adenosina/uso terapêutico , RNA/metabolismo , RNA/uso terapêutico , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA